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ABSTRACT 
 

The technology of the automatic speech recognition is in full grow, a multitude of 

algorithms have been developed to improve the performance and robustness of ASR 

(Automatic Speech Recognition) systems. Automatic Speech recognition systems are 

increasingly widespread and used in very different acoustic conditions, and by very 

different speakers. The use of Mel frequency cepstral coefficients (MFCCs) for music 

information retrieval is one of the standard methods used in ASR systems. This paper 

describes a method to generate and process the Speech signal in digital domain using 

Texas Instruments’ TMS320C6713 DSK. 

     

 Our aim is to develop software to recognize the speech samples from different 

users so as to restrict access to a predefined set of users. For this purpose, we form a 

database of different speech samples. The MFCCs for a particular Speech signal is unique 

for every individual. Therefore every such signal will generate different MFCCs. These 

are then compared with the previously stored MFCCs of signals to check if any match is 

found. For real time processing of Speech signal, fast processors like Digital Signal 

Processors are required. 
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1. INTRODUCTION 
 

1.1 Development in the Digital Signal Processors Domain 

The world of science and engineering is filled with signals: images from remote 

space probes, voltages generated by the heart and brain, radar and sonar echoes, seismic 

vibrations, and countless other applications. Digital Signal Processing is the science of 

using computers to understand these types of data. This includes a wide variety of goals: 

filtering, speech recognition, image enhancement, data compression, neural networks, 

and much more. DSP is one of the most powerful technologies that will shape science 

and engineering in the twenty-first century. [1] 

Prior to the advent of stand-alone DSP chips, most DSP applications were 

implemented using bit slice processors. In 1978, Intel released the 2920 as an "analog 

signal processor". It had an on-chip ADC/DAC with an internal signal processor, but it 

did not have a hardware multiplier and was not successful in the market. In 1979, AMI 

released the S2811. It was designed as a microprocessor peripheral, and it had to be 

initialized by the host. In 1980 the first stand-alone, complete DSPs – the NEC µPD7720 

and AT&T DSP1 – were introduced. 

In 1983, Texas instruments launched its first DSP. [2] It was based on the Harvard 

architecture, and so had separate instruction and data memory. It already had a special 

instruction set, with instructions like load-and-accumulate or multiply-and-accumulate. It 

could work on 16-bit numbers and needed 390ns for a multiply-add operation. About five 

years later, the second generation of DSPs began to spread. They had 3 memories for 

storing two operands simultaneously and included hardware to accelerate tight loops, 

they also had an addressing unit capable of loop-addressing. 
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The main improvement in the third generation was the appearance of application-

specific units and instructions in the data path, or sometimes as coprocessors. These units 

allowed direct hardware acceleration of very specific but complex mathematical 

problems, like the Fourier-transform or matrix operations. The fourth generation is best 

characterized by the changes in the instruction set and the instruction encoding/decoding.  

1.2 Modern DSPs 

Modern signal processors yield better performance. This is due in part to both 

technological and architectural advancements like lower design rules, fast-access two-

level cache, (E) DMA circuit and a wider bus system. Most DSPs use fixed-point 

arithmetic, because in real world signal processing the additional range provided by 

floating point is not needed, and there is a large speed benefit and cost benefit due to 

reduced hardware complexity. Floating point DSPs may be invaluable in applications 

where a wide dynamic range is required. Product developers might also use floating point 

DSPs to reduce the cost and complexity of software development in exchange for more 

expensive hardware, since it is generally easier to implement algorithms in floating point. 

Generally, DSPs are dedicated integrated circuits; however DSP functionality can also be 

realized using Field Programmable Gate Array chips. Embedded general-purpose RISC 

processors are becoming increasingly DSP like in functionality.  

A Texas Instruments C6000 series DSP clocks at 1.2 GHz and implements 

separate instruction and data caches as well as an 8 MiB 2nd level cache, and its I/O 

speed is rapid thanks to its 64 EDMA channels. The top models are capable of as many as 

8000 MIPS (million instructions per second), use VLIW (very long instruction word) 

encoding, perform eight operations per clock-cycle and are compatible with a broad 

range of external peripherals and various buses (PCI/serial/etc). The other major players 

in the market that manufacture high end DSPs are Freescale, Analog Devices, and NXP 

Semiconductors. 
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2. LITERATURE SURVEY 
 

 The Literature survey included the study of various DSP processors available for 

real time applications in the market. While Motorola has been advancing the processing 

power of the PowerPC, Texas Instruments has been introducing new members of its 

C6000 family that offer more speed and flexibility to an already impressive DSP 

portfolio.[3] Hence TMS320, the widely used product from Texas Instruments-the leading 

manufacturer of DSP’s is an optimum choice for real-time applications. 

 

 Furthermore, when choosing a processor, a fundamental question to answer is 

whether the application can be best addressed using a fixed-point or a floating-point 

processor. The Texas Instruments C6000 series of DSPs are available in both fixed- and 

floating-point varieties. For instance, in the C6201 and C6203, all eight functional units 

are fixed-point. In the C6701, six of the eight units are floating point. Because of their 

lower cost and power, fixed-point processors are best suited for high volume, heavily 

embedded applications. For fixed-point processors, the additional code complexity 

required for scaling may be offset by the lower cost of the silicon. Floating-point 

processors are best for applications that require extensive floating- point arithmetic, or in 

custom applications where the code is likely to change and the user can exploit the faster 

development effort. [4] 

 

The software aspect of this project revolves around the premier code development 

tool the Code Composer Studio, a complete code development environment that runs on 

Windows workstations. It provides a highly flexible application development 

environment which suits the varying needs of real-time applications. With digital signal 

processing fast expanding its reach, subject matter related to this field is available in 

abundance. While working on this project we have studied matter from various sources 

such as books, IEEE papers, online articles and reference manuals. The knowledge 

gained from this activity has been of great help to us in understanding the basic concepts 

related to our project and has only ignited further interest in this topic. 
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3. HARDWARE COMPOSITION OF THE KIT 

Before moving on to the actual application of the DSP processor it is necessary to 

understand the DSP processor’s block diagram and the function of each component. 

Therefore let us familiarize ourselves with the TMS320C6713. 

 
3.1 About DSK C6713 

 
        The C6713 DSK builds on TI’s industry –leading line of cost easy to use DSP 

Starter Kit (DSK) development boards. The performance board features the 

TMS320C6713 floating point DSP. Capable of performing 1350 million floating –point 

operations per second (MFLOPS), the C6713 DSP makes the most powerful DSK 

development board. The DSK also serves as a hardware reference design for the 

TMS320C6713 DSP. Schematics, logic equations and application notes are available to 

ease hardware development and reduce time to market. [5] 

 

 The DSK starter kit includes the following hardware items: 

 

 

TMS320C6713 DSK    TMS320C6713 DSK development board 

 

Other hardware     External 5V DC power supply,  

                                      IEEE 1284 compliant male-to-female cable 

        

CD-ROM                Code Composer Studio DSK tools     
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3.1 SYSTEM LAYOUT OF TMS320C6713 

 

 
3.2 BLOCK DIAGRAM OF C6713 DSK 
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3.2   Features of DSK C6713    
 

 The DSK comes with a full complement of on-board devices that suit a wide 

variety of application environments. Key features include: 

 

 A Texas Instruments TMS320C6713 DSP  

The kit has Highest Performance Floating Signal Processor (DSP) which executes 

Eight 32-bit Instructions/cycle operating at 225 MHz. It has rich peripheral set 

which is optimized for Audio. It supports programming languages like C/C++. 

 

 An AIC23 stereo codec 

The DSP interfaces to analog audio signals through an on-board AIC23 codec and 

four 3.5 mm audio jacks (microphone input, line input, line output, and 

headphone output). The codec can select the microphone or the line input as the 

active input. The analog output is driven to both the line out (fixed gain) and 

headphone (adjustable gain) connectors. McBSP0 is used to send commands to 

the codec control interface while McBSP1 is used for digital audio data. McBSP0 

and McBSP1 can be re-routed to the expansion connectors in software.   

 

 16 Mbytes of synchronous DRAM 

 

 512 Kbytes of non-volatile Flash memory (256 Kbytes usable in default  

configuration) 

 

 4 user accessible LEDs and DIP switches 

The DSK includes 4 LEDs and a 4 position DIP switch as a simple way to provide 

the user with interactive feedback. Both are accessed by reading and writing to the 

CPLD registers. 
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 Software board configuration through registers implemented in CPLD 

A programmable logic device called a CPLD is used to implement glue logic that 

ties the board components together. The CPLD has a register based user interface 

that lets the user configure the board by reading and writing to its registers. 

 

 Configurable boot options 

 

 Standard expansion connectors for daughter card use  

 

 JTAG emulation through on-board JTAG emulator with USB host interface 

or external emulator.  

Code Composer communicates with the DSK through an embedded JTAG           

emulator with a USB host interface. The DSK can also be used with an external 

emulator through the external JTAG connector 

 

 Single voltage power supply (+5V) 

An included 5V external power supply is used to power the board. On-board 

switching voltage regulators provide the +1.26V DSP core voltage and +3.3V I/O 

supplies. The board is held in reset until these supplies are within operating 

specifications. [5] 
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3.3 CPU (DSP core) description 

 
The TMS320C6713B floating-point digital signal processor is based on the C67x 

CPU. The CPU fetches advanced very-long instruction words (VLIW) (256 bits wide) to 

supply up to eight 32-bit instructions to the eight functional units during every clock 

cycle. The VLIW architecture features controls by which all eight units do not have to be 

supplied with instructions if they are not ready to execute. The first bit of every 32-bit 

instruction determines if the next instruction belongs to the same execute packet as the 

previous instruction, or whether it should be executed in the following clock as a part of 

the next execute packet. Fetch packets are always 256 bits wide; however, the execute 

packets can vary in size. 

 

 The variable-length execute packets are a key memory-saving feature, 

distinguishing the C67x CPU from other VLIW architectures. The CPU features two sets 

of functional units. Each set contains four units and a register file. One set contains 

functional units L1, .S1, .M1, and .D1; the other set contains units .D2, .M2, .S2, and .L2. 

The two register files each contain 16 32-bit registers for a total of 32 general-purpose 

registers. The two sets of functional units, along with two register files, compose sides A 

and B of the CPU (see the functional block and CPU diagram and Figure 1). The four 

functional units on each side of the CPU can freely share the 16 registers belonging to 

that side. Additionally, each side features a single data bus connected to all the registers 

on the other side, by which the two sets of functional units can access data from the 

register files on the opposite side. While register access by functional units on the same 

side of the CPU as the register file can service all the units in a single clock cycle, 

register access using the register file across the CPU supports one read and one write per 

cycle. [6] 
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The C67x CPU executes all C62x instructions. In addition to C62x fixed-point 

instructions, the six out of eight functional units (.L1, .S1, .M1, .M2, .S2, and .L2) also 

execute floating-point instructions. The remaining two functional units (.D1 and .D2) also 

execute the new LDDW instruction which loads 64 bits per CPU side for a total of 128 

bits per cycle. 

 

Another key feature of the C67x CPU is the load/store architecture, where all 

instructions operate on registers (as opposed to data in memory). Two sets of data-

addressing units (.D1 and .D2) are responsible for all data transfers between the register 

files and the memory. The data address driven by the .D units allows data addresses 

generated from one register file to be used to load or store data to or from the other 

register file. The C67x CPU supports a variety of indirect addressing modes using either 

linear- or circular-addressing modes with 5- or 15-bit offsets. All instructions are 

conditional, and most can access any one of the 32 registers. Some registers, however, are 

singled out to support specific addressing or to hold the condition for conditional 

instructions (if the condition is not automatically “true”). The two .M functional units are 

dedicated for multiplies. The two .S and .L functional units perform a general set of 

arithmetic, logical, and branch functions with results available every clock cycle. The 

processing flow begins when a 256-bit-wide instruction fetch packet is fetched from a 

program memory. [6] 
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The 32-bit instructions destined for the individual functional units are “linked” 

together by “1” bits in the least significant bit (LSB) position of the instructions. The 

instructions that are “chained” together for simultaneous execution (up to eight in total) 

compose an execute packet. A “0” in the LSB of an instruction breaks the chain, 

effectively placing the instructions that follow it in the next execute packet. If an execute 

packet crosses the fetch-packet boundary (256 bits wide), the assembler places it in the 

next fetch packet, while the remainder of the current fetch packet is padded with NOP 

instructions. The number of execute packets within a fetch packet can vary from one to 

eight. Execute packets are dispatched to their respective functional units at the rate of one 

per clock cycle and the next 256-bit fetch packet is not fetched until all the execute 

packets from the current fetch packet have been dispatched. After decoding, the 

instructions simultaneously drive all active functional units for a maximum execution rate 

of eight instructions every clock cycle. While most results are stored in 32-bit registers, 

they can be subsequently moved to memory as bytes or half-words as well. All load and 

store instructions are byte-, half-word, or word-addressable. [6] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 11   

 

 

3.3 CPU CORE ARCHITECTURE OF C6713 DSK 

 

Now that we have understood the working of the DSP processor let us move ahead to the 

actual applications from the following chapter onwards. 
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4. SOFTWARE USED TO ACCESS THE KIT 

 

 In order to communicate with the DSK, we use a software ambiance called the 

Code Composer Studio. 

 

4.1 OVERVIEW OF CODE COMPOSER 3.1 
 

Code Composer Studio (CCS) allows us to write a program in C language that can 

be used to initialize the DSK. Through CCS, we can initialize various ports and registers 

of the DSK. Code Composer provides a rich debugging environment that allows stepping 

through the code, set breakpoints, and examining the registers as the code is getting 

executed. 

 

The Code Composer Studio (CCS) application provides an integrated 

environment with the capabilities like Integrated development environment with an 

editor, debugger, project manager, and profiler, C/C++ compiler, assembly optimizer and 

linker, Simulator, Real-time operating system (DSP/BIOS™), Real-Time Data Exchange 

(RTDX™) between the Host and the  Target, and Real-time analysis and data 

visualization.  

 

CCStudio integrated development environment includes host tools and target 

software that slashes development time and optimizes the performance for all real-time 

embedded DSP applications. Some of the Code Composer Studio’s host side tools 

include TMS320 DSPs and OMAP Code, Drag and Drop CCStudio setup utility, 

Component manager support for multiple versions of DSP/BIOS and code generation 

tools within the IDE, Source Code Debugger common interface for both simulator and 

emulator targets, Connect/Disconnect; robust, resilient host to target connection, 

Application Code Tuning Dashboard, RTDX ™ data transfer for real time data exchange 

between host and target, Data Converter Plug-in to auto configure support for Texas 

Instruments Mixed Signal products, Quick Start tutorials and Help. 
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 Code Composer Studio’s target software includes DSP/BIOS ™ Kernel for the 

TMS320 DSPs, TMS320 DSP Algorithm Standard to enable software reuse, Chip 

Support Libraries to simplify device configuration, and DSP Libraries for optimum DSP 

functionality.  

 

4.2 Installation of Code Composer Studio 

 

• The Code Composer Studio installation CD is included in the kit. 
 

• The CD auto-runs to open a main menu dialog box. 
 
 

4.1 MAIN MENU DIALOG BOX 
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• Click on ‘ Install Products’ . It will open another window with 4 options. Click on 

C600 CODE COMPOSER STUDIO v3.1. 
 

4.2 INSTALLATON SCREEN 

 
 

• Click on C600 CODE COMPOSER STUDIO v3.1 

 

• Click on next. 
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4.3 WELCOME SCREEN 

 
 

• The setup will ask for the type of install. A ‘typical’ install is recommended. 

 

4.4 CUSTOMIZE INSTALLATION 
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• The rest of the steps are interactive and depend on user’s choice. 

 

4.5 INSTALLATION LOCATION 

 
 

4.6 INSTALLATION IN PROGRESS 
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• After the CCS installation is complete, you are directed back to the main menu. 

Once you are there, click on the on ‘DSK 6713 Drivers and Target Content’. 

 

4.7 DSK 6713 DRIVERS AND TARGET CONTENT 

 
 

• Again you are prompted to enter type of installation. A ‘typical’ install is 

recommended. 
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4.8 INSTALLATION WIZARD 

 
 

• Select directory and finish the installation. 

 

4.9 DESTINATION FOLDER 
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• In order to interface the target device (DSK) with the computer using CCS, we 

have to open Code Composer Studio setup and select DSK 6713. Then we can 

proceed further. 

 

4.9 TARGET DEVICE CONNECTION 

 
 

Note that before you install the DSK software; make sure the PC has a USB port 

and an operating system (Windows 98SE/2000/XP) that supports USB. For Windows 

2000 and XP you must install Code Composer Studio using Administrator privileges. To 

run CCS on these systems requires write permission on the registry.  
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4.3 Testing Your Connection 

 
If you want to test your DSK and USB connection you can launch the C6713 

DSK Diagnostic Utility from the icon on your desktop. 

 

 
From the diagnostic utility, press the start button to run the diagnostics. In 

approximately 20 seconds all the on-screen test indicators should turn green. [7] 

 

 

 
4.10 TESTING CONNECTION OF THE DSK 
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4.4 Starting Code Composer 

 
To start Code Composer Studio, double click the C6713DSK CCS icon on your 

desktop.  

 

The following window will appear when launching CCS or the Diagnostic Utility 

indicating the enumeration status. [8] 
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5. SPEAKER RECOGNITION 
 
 Speech is one of the natural forms of communication. Recent development has 

made it possible to use this in the security system. In speaker identification, the task is to 

use a speech sample to select the identity of the person that produced the speech from 

among a population of speakers. In speaker verification, the task is to use a speech 

sample to test whether a person who claims to have produced the speech has in fact done 

so. [9] This technique makes it possible to use the speakers’ voice to verify their identity 

and control access to services such as voice dialing, banking by telephone, telephone 

shopping, database access services, information services, voice mail, security control for 

confidential information areas, and remote access to computers.  

5.1 Traditional Algorithms Used for Speech Recognition 

Acoustic modeling and language modeling are important parts of modern 

statistically-based speech recognition algorithms. Hidden Markov models (HMMs) are 

widely used in many systems. Language modeling has many other applications such as 

smart keyboard and document classification. Modern general-purpose speech recognition 

systems are generally based on Hidden Markov Models. These are statistical models 

which output a sequence of symbols or quantities. One possible reason why HMMs are 

used in speech recognition is that a speech signal could be viewed as a piecewise 

stationary signal or a short-time stationary signal. That is, one could assume in a short-

time in the range of 10 milliseconds, speech could be approximated as a stationary 

process. Speech could thus be thought of as a Markov model for many stochastic 

processes. Dynamic time warping is an algorithm for measuring similarity between two 

sequences which may vary in time or speed. 
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5.2 Principles of Speaker Recognition 

Speaker recognition methods can be divided into text-independent and text-

dependent methods. In a text-independent system, speaker models capture characteristics 

of somebody’s speech which show up irrespective of what one is saying. In a text-

dependent system, on the other hand, the recognition of the speaker’s identity is based on 

history her speaking one or more specific phrases, like passwords, card numbers, PIN 

codes, etc. Every technology of speaker recognition, identification and verification, 

whether text-independent and text dependent, each has its own advantages and      

disadvantages and may require different treatments and techniques. The choice of which 

technology to use is application-specific. At the highest level, all speaker recognition 

systems contain two main modules feature extraction and feature matching. [10] 

 

Speech recognition systems can be characterized by many parameters. An 

isolated-word speech recognition system requires that the speaker pause briefly between 

words, whereas a continuous speech recognition system does not. Spontaneous, or 

extemporaneously generated, speech contains disfluencies, and is much more difficult to 

recognize than speech read from script. Some systems require speaker enrollment---a user 

must provide samples of his or her speech before using them, whereas other systems are 

said to be speaker-independent, in that no enrollment is necessary. Some of the other 

parameters depend on the specific task. Recognition is generally more difficult when 

vocabularies are large or have many similar-sounding words. When speech is produced in 

a sequence of words, language models or artificial grammars are used to restrict the 

combination of words. 
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6. SPEECH FEATURE EXTRACTION PROCESS 

 
6.1 INTRODUCTION 

 

The purpose of this module is to convert the speech waveform to some type of 

parametric representation (at a considerably lower information rate) for further analysis 

and processing. This is often referred as the signal-processing front end. The speech 

signal is a slowly timed varying signal (it is called quasi-stationary). An example of 

speech signal is shown below. 

 
6.1 Example Of Speech Signal 

 When examined over a sufficiently short period of time (between 5 and 100 

msec), its characteristics are fairly stationary. However, over long periods of time (on the 

order of 1/5 seconds or more) the signal characteristic change to reflect the different 

speech sounds being spoken. Therefore, short-time spectral analysis is the most common 

way to characterize the speech signal. [11] 
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6.2 THE “MFCC” PROCESSOR 

 

MFCC's are based on the known variation of the human ear's critical bandwidths 

with frequency, filters spaced linearly at low frequencies and logarithmically at high 

frequencies have been used to capture the phonetically important characteristics of 

speech. This is expressed in the mel-frequency scale, which is a linear frequency spacing 

below 1000 Hz and a logarithmic spacing above 1000 Hz.  

 

A block diagram of the structure of an MFCC processor is given in figure below. 

  

 
 

6.2 Block Diagram of the MFCC Processor 

                 The speech input is typically recorded at a sampling rate above 10000 Hz. This 

sampling frequency was chosen to minimize the effects of aliasing in the analog-to-

digital conversion. These sampled signals can capture all frequencies up to 5 kHz, which 

cover most energy of sounds that are generated by humans. [12] 
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           As been discussed previously, the main purpose of the MFCC processor is to 

mimic the behavior of the human ears. In addition, rather than the speech waveforms 

themselves, MFFC's are shown to be less susceptible to mentioned variations.  

 

           6.2.1 Framing 

 
        The sound signal is sampled and the sampled data is stored in an array. The size of 

the buffer varies depending upon the time for which the input sound signal is taken. 

Hence the length of the real-time sound signal is variable. So, before performing FFT on 

this data, it is necessary to split the data into uniform frames on which the FFT could be 

performed. 

            

In this step the continuous speech signal is blocked into frames of N samples, with 

adjacent frames being separated by M (M < N). The first frame consists of the first N 

samples. This process continues until all the speech is accounted for within one or more 

frames. Typical values for N and M are N = 256 (which is equivalent to ~ 30 msec 

windowing and facilitate the fast radix-2 FFT) and M = 100. 
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                6.2.2 Windowing 

          
                 The next step in the processing is to window each individual frame so as to 

minimize the signal discontinuities at the beginning and end of each frame. The concept 

here is to minimize the spectral distortion by using the window to taper the signal to zero 

at the beginning and end of each frame. Once the data is framed, it is necessary to pass it 

through a window so as to reduce all spectral leakage. 

 
                  6.2.2.1 Spectral leakage 

           
                  The frequency spectrum of a 1000 Hz sine (or cosine) wave consists of a 

single sharp line. However, sine waves of other frequencies do not in general have such 

"clean" spectra.  

 

 

6.3 Leakage in the Sinusoid 
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This spreading out of spectral energy across several frequency "channels" is 

called spectral leakage. Spectral leakage affects any frequency component of a signal 

which does not exactly coincide with a frequency channel. Since the frequency 

components of an arbitrary signal are unlikely to satisfy this requirement, spectral 

leakage is more likely to occur than not with real-life sampled signals. 

6.2.2.1 Cause of spectral leakage 

               Spectral leakage occurs when a frequency component of a signal does not slot 

exactly into one of the frequency channels in the spectrum computed using the discrete 

Fourier transform. These "frequency channels", the frequencies represented by lines in 

the spectrum, are exact integer multiples (harmonics) of the fundamental frequency 1/Nh. 

A sine wave with a frequency coinciding with one of these frequency channels has the 

property that you can fit an exact integer number of sine wave cycles into the complete 

sample length of the sampled signal. (The number of cycles is just the harmonic number). 

If there is a mismatch, the sudden jump or discontinuity created by the pattern 

mismatch gives rise to the spurious components in the spectrum of the signal, causing a 

particular frequency component of the signal to appear not as a single sharp line but as a 

spread of frequencies, roughly centered around where the frequency component should 

be located, somewhere between the two nearest frequency channels either side. 

The "real life" signals are not simple sine waves. Likewise, a speech waveform 

contains many components of different frequencies, and it is extremely unlikely that there 

will be a smooth match at the beginning and end of the sampled signal. Spectral leakage 

is therefore almost certainly going to affect the spectrum of any signal of practical 

interest. [13] 
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6.2.2.3 Reducing spectral leakage 

The only way to avoid such leakage entirely would be to arrange that all the 

frequency components of the signal being examined coincide exactly with frequency 

channels in the computed spectrum. This, however, is impractical for an arbitrary signal 

containing many (usually unknown) frequency components. 

While spectral leakage cannot in general be eliminated completely, its effects can 

be reduced. This is done by applying a window function to the sampled signal. The 

sampled values of the signal are multiplied by a function which tapers toward zero at 

either end, so that the sampled signal, rather than starting and stopping abruptly, "fades" 

in and out like some music CD tracks. This reduces the effect of the discontinuities where 

the mismatched sections of the signal join up and hence also the amount of leakage. [13] 
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6.2.2.4 Choice of window  

Windowing addresses this spectral leakage problem by modifying the amplitudes 

of the waveform segment so that samples nearer the edges are low in amplitude and 

samples in the middle of the segment are at full amplitude. Computer programs often 

offer several window types for us to choose from. The two most common ones are 

“Hamming” and “Rectangular”.  

 

6.4 Hamming Window 

The Hamming window reduces the amplitudes of the samples near the edges of 

the waveform chunk as illustrated in figure 1; whereas the rectangular window does not 

change the waveform samples at all. The Hamming window should be in the conjunction 

with FFT analysis, and rectangular windowing with all other types of analysis, including 

autocorrelation pitch tracking, RMS amplitude, and LPC analysis.      

If we define the window as , where N is the number of 

samples in each frame, then the result of windowing is  

The signal  

Typically the Hamming window is used, which has the form:  
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6.2.3 Fast Fourier Transform 

 
The next processing step is the Fast Fourier Transform, which converts each 

frame of N samples from the time domain into the frequency domain. The Fast Fourier 

transform (FFT) is a discrete Fourier transform algorithm which reduces the number of 

computations needed for points from 2N2 to 2NlgN, where lg is the base-2 logarithm. 

FFTs were first discussed by Cooley and Tukey (1965), although Gauss had actually 

described the critical factorization step as early as 1805 (Bergland 1969, Strang 1993). 

The FFT is a fast algorithm to implement the Discrete Fourier Transform (DFT) which is 

defined on the set of N samples {xn}, as follow:  

 

 
 

Note that we use j here to denote the imaginary unit, i.e. . In general 

Xn's are complex numbers. The resulting sequence {Xn} is interpreted as follows: the 

zero frequency corresponds to n = 0, positive frequencies correspond to 

values , while negative frequencies correspond to 

. Here, Fs denotes the sampling frequency.  

 

 

 

 

 

 

 



 32   

 

The result after this step is often referred to as spectrum or periodogram. A 

discrete Fourier transform can be computed using an FFT by means of the Danielson-

Lanczos lemma if the number of points N is a power of two. If the number of points N is 

not a power of two, a transform can be performed on sets of points corresponding to the 

prime factors of N which is slightly degraded in speed. Base-4 and base-8 fast Fourier 

transforms use optimized code, and can be 20-30% faster than base-2 fast Fourier 

transforms.  

Fast Fourier transform algorithms generally fall into two classes: decimation in 

time, and decimation in frequency. The Cooley-Tukey FFT algorithm first rearranges the 

input elements in bit-reversed order, then builds the output transform (decimation in 

time). The basic idea is to break up a transform of length N into two transforms of length 

N/2 using the identity sometimes called the Danielson-Lanczos lemma. 

 

 
 

The easiest way to visualize this procedure is perhaps via the Fourier matrix.  
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6.2.4 Power Spectrum of the Signal  

Speech is a real signal, but its FFT has both real and imaginary components.  The 

power of the frequency domain is calculated by summing the square of the real and 

imaginary components of the signal to yield a real signal. The second half of the samples 

in the frame are ignored since they are symmetric to the first half (the speech signal being 

real.  

For a given signal, the power spectrum gives a plot of the portion of a signal's 

power (energy per unit time) falling within given frequency bins. [14] "Power Spectra" 

answers the question "which frequencies contain the signal´s power?" The answer is in 

the form of a distribution of power values as a function of frequency, where "power" is 

considered to be the average of the signal. In the frequency domain, this is the square of 

FFT´s magnitude. 

Power spectra can be computed for the entire signal at once (a "periodogram") or 

periodograms of segments of the time signal can be averaged together to form the "power 

spectral density".[15]  
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6.2.5 Mel-Frequency wrapping 

Triangular filters are designed using the Mel frequency scale with a bank of filters 

to approximate the human ear. The power signal is then applied to this bank of filters to 

determine the frequency content across each filter. Twenty filters are chosen, uniformly 

spaced in the Mel-frequency scale between 0 and 4 kHz. The Mel-frequency spectrum is 

computed by multiplying the signal spectrum with a set of triangular filters designed 

using the Mel scale. For a given frequency f, the Mel of the frequency is given by 

B(f) = [1125 ln (1+f 700)] mels 

 

If m is the Mel, then the corresponding frequency is 

B-1(m) = [700 exp (m1125) - 700] Hz 

 

The frequency edge of each filter is computed by substituting the corresponding 

Mel. Once the edge frequencies and the center frequencies of the filter are found, 

boundary points are computed to determine the transfer function of the filter. [16] 
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6.2.6 Conversion to Decibels 

After calculating the Mel Frequency Coefficients, we scale them using the 

logarithmic scale. A logarithmic scale is a scale of measurement that uses 

the logarithm of a physical quantity instead of the quantity itself. 

       A reason for using the decibel is that different sound signals together produce 

very large range of sound pressures. Because the power in a sound wave is proportional 

to the square of the pressure, the ratio of the maximum power to the minimum power is in 

(short scale) trillions. We need to plot the power spectrum of these signals where we need 

to deal with such a range, so we choose this conversion to decibels. 

After finding out the power spectrum, the log Mel spectrum has to be converted 

back to time. The result is called the Mel frequency cepstrum coefficients (MFCCs). The 

cepstral representation of the speech spectrum provides a good representation of the local 

spectral properties of the signal for the given frame analysis. Because the Mel spectrum 

coefficients are real numbers (and so are their logarithms), they may be converted to the 

time domain using the Discrete Cosine Transform (DCT).  
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6.2.7 Discrete Cosine Transform  

       The final stage in extracting MFCC feature vectors is to apply a discrete cosine 

transform (DCT). The DCT serves two purposes. First, the DCT performs the final part 

of a cepstral transformation which separates the slowly varying spectral envelope (or 

vocal tract) information from the faster varying speech excitation. Lower order 

coefficients represent the slowly varying vocal tract while higher order coefficients 

contain excitation information. For speech recognition, vocal tract information is more 

useful for classification than excitation information. Therefore, to create the final MFCC 

vector, the output vector from the DCT is truncated to retain only the lower order 

coefficients. The second purpose of DCT is to decorrelate the elements of the feature 

vector making it suitable for diagonal covariance matrix statistical classifiers.  
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6.2.8 The Mel-frequency Cepstral Coefficients (MFCC)  

  In this final step, the log Mel spectrum is converted back to time. The result is 

called the Mel frequency cepstrum coefficients (MFCC). The cepstral representation of 

the speech spectrum provides a good representation of the local spectral properties of the 

signal for the given frame analysis. The Mel-frequency cepstrum (MFC) is one of the 

non-linear speech analysis methods in automatic speech recognition. Mel-frequency 

cepstral coefficients (MFCCs) are coefficients that collectively make up an MFC. They 

are derived from a type of cepstral representation of the audio clip (a nonlinear 

"spectrum-of-a-spectrum"). [17] 

 Because the Mel spectrum coefficients (and so their logarithm) are real numbers, 

we can convert them to the time domain using the Discrete Cosine Transform (DCT). 

Therefore if we denote those Mel power spectrum coefficients that are the result of 

 the last step are , we can calculate the MFCC's, as  

 

 

Note that the first component is excluded, from the DCT since it represents 

the mean value of the input signal which carried little speaker specific information.  
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The number of Mel cepstrum coefficients, K, is typically chosen as 20. The first 

component is excluded from the DCT since it represents the mean value of the input 

signal which carries little speaker specific information. By applying the procedure 

described above, for each speech frame of about 30ms, a set of Mel-frequency cepstrum 

coefficients is computed. This set of coefficients is called an acoustic vector. These 

acoustic vectors can be used to represent and recognize the voice characteristic of the 

speaker. Therefore each input utterance is transformed into a sequence of acoustic 

vectors.   
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7. IMPLEMENTATION OF THE PROJECT 
 

The aim of this project is to determine the identity of the speaker from the speech 

sample of the speaker and the trained vectors. Trained vectors are derived from the 

speech sample of the speaker at a different time.  

 

First the input analog speech signal is digitized at 8 KHz sampling frequency 

using the on board ADC (Analog to Digital Converter). The Speech sample is stored in a 

one-dimensional array. The speech signal is split into frames. Each frame consists of 128 

Samples of Speech signal. Speech sample in one frame is considered to be stationary. 

 

After Framing, to prevent the spectral leakage we apply windowing. Here 

Hamming window with 128 coefficients is used.  

 

Third step is to convert the Time domain speech Signal into Frequency Domain 

using Discrete Fourier Transform. Here Fast Fourier Transform is used. The resultant 

transformation will result in a signal being complex in nature. Speech is a real signal but 

its Fourier Transform will be a complex one (Signal having both real and imaginary).  

 

The power of the signal in Frequency domain is calculated by summing the 

square of Real and Imaginary part of the signal in Frequency Domain. The power signal 

will be a real one. 

 

 

 

 

 

 

 



 40   

 

Triangular filters are designed using Mel Frequency Scale. This bank of filters 

will approximate our ears. The power signal is then applied to this bank of filters to 

determine the frequency content across each filter. In our implementation we choose total 

number of filters to be 20. These 20 filters are uniformly spaced in Mel Frequency scale 

between 0-4KhZ. 

  

After computing the Mel-Frequency Spectrum, log of Mel-Frequency Spectrum is 

computed. Discrete Cosine Transform of the resulting signal will result in the 

computation of the Mel-Frequency Cepstral Co-efficient. 

  

Euclidean distance between the trained vectors and the Mel-Frequency Cepstral 

Coefficients are computed for each trained vectors. The trained vector that produces the 

smallest distance will be identified as the speaker. 
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7.1 Flowchart of the Program 
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8. SOFTWARE USED IN THE PROJECT 

 
 8.1 Code for Training 

 
#include "DSK6713_loopcfg.h" 
 
#include "dsk6713.h" 
 
#include "dsk6713_aic23.h" 
 
#include "stdio.h" 
 
#include "c6713dskinitmic.h" 
 
#include<stdio.h> 
 
#include<math.h> 
 
#include<stdlib.h> 
   
 
int rand_int(void); 
 
#define N 65536                     //large buffer size 
 
#define PI 3.14159 
 
#define column_length 128           // Frame Length of the one speech signal 
 
#define row_length 100              // Total number of Frames in the given speech signal 
 
#define Number_Of_Filters 20        // Total Number of Filters  
 
Uint32 xL; 
 
long i,k,j,g,c,z; 
 
int program_control=0; 
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//Generic Structure to represent real and imaginary part of a signal 
 
struct complex  
 
{  
 
float real; 
 
float imag; 
 
};  
 
//Structure to store the input speech sample 
 
struct buffer  
 
{ 
 
struct complex data[row_length][column_length]; 
 
};   
 
//Structure to store the Mel-Frequency Co-efficients 
 
struct mfcc  
 
{ 
 
float data[row_length][Number_Of_Filters]; 
 
};  
 
short buffer1[N]; 
 
#pragma DATA_SECTION(buffer1,".EXTRAM") 
 
//real_buffer is used to store the input speech. 
 
struct buffer real_buffer;   
 
#pragma DATA_SECTION(real_buffer,".EXTRAM") 
 
/Codec data handle structure 
 
DSK6713_AIC23_CodecHandle hCodec; 
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double MFCC_Y[row_length][Number_Of_Filters]; 
 
float hamming_window[256] =  
{ 
8.000000e-002,8.013963e-002,8.055844e-002,8.125618e-002,8.223242e-002,8.348657e-
002,8.501786e-002, 
 
8.682537e-002,8.890801e-002,9.126449e-002,9.389341e-002,9.679315e-002,9.996197e-
002,1.033979e-001, 
 
1.070989e-001,1.110628e-001,1.152870e-001,1.197691e-001,1.245063e-001,1.294957e-
001,1.347344e-001, 
 
1.402191e-001,1.459465e-001,1.519131e-001,1.581153e-001,1.645494e-001,1.712114e-
001,1.780973e-001, 
 
1.852029e-001,1.925239e-001,2.000559e-001,2.077942e-001,2.157342e-001,2.238711e-
001,2.321999e-001, 
 
2.407156e-001,2.494129e-001,2.582867e-001,2.673315e-001,2.765418e-001,2.859121e-
001,2.954366e-001, 
 
3.051097e-001,3.149253e-001,3.248775e-001,3.349604e-001,3.451677e-001,3.554933e-
001,3.659309e-001, 
 
3.764742e-001,3.871168e-001,3.978522e-001,4.086739e-001,4.195753e-001,4.305498e-
001,4.415908e-001, 
 
4.526915e-001,4.638452e-001,4.750452e-001,4.862846e-001,4.975566e-001,5.088543e-
001,5.201710e-001, 
 
5.314997e-001,5.428336e-001,5.541657e-001,5.654893e-001,5.767974e-001,5.880831e-
001,5.993396e-001, 
 
6.105602e-001,6.217378e-001,6.328659e-001,6.439376e-001,6.549462e-001,6.658850e-
001,6.767474e-001, 
 
6.875267e-001,6.982165e-001,7.088102e-001,7.193015e-001,7.296839e-001,7.399512e-
001,7.500970e-001, 
 
 
 
7.601153e-001,7.700000e-001,7.797450e-001,7.893445e-001,7.987927e-001,8.080837e-
001,8.172119e-001, 
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8.261719e-001,8.349581e-001,8.435653e-001,8.519882e-001,8.602216e-001,8.682607e-
001,8.761004e-001, 
 
8.837362e-001,8.911632e-001,8.983771e-001,9.053733e-001,9.121478e-001,9.186964e-
001,9.250150e-001, 
 
9.310999e-001,9.369473e-001,9.425538e-001,9.479159e-001,9.530303e-001,9.578940e-
001,9.625040e-001, 
 
9.668575e-001,9.709518e-001,9.747846e-001,9.783533e-001,9.816560e-001,9.846905e-
001,9.874550e-001, 
 
9.899479e-001,9.921676e-001,9.941128e-001,9.957824e-001,9.971752e-001,9.982905e-
001,9.991275e-001, 
 
9.996858e-001,9.999651e-001,9.999651e-001,9.996858e-001,9.991275e-001,9.982905e-
001,9.971752e-001, 
 
9.957824e-001,9.941128e-001,9.921676e-001,9.899479e-001,9.874550e-001,9.846905e-
001,9.816560e-001, 
 
9.783533e-001,9.747846e-001, 9.709518e-001,9.668575e-001,9.625040e-
001,9.578940e-001,9.530303e-001, 
 
9.479159e-001,9.425538e-001,9.369473e-001,9.310999e-001,9.250150e-001,9.186964e-
001,9.121478e-001, 
 
9.053733e-001,8.983771e-001,8.911632e-001,8.837362e-001,8.761004e-001,8.682607e-
001,8.602216e-001, 
 
8.519882e-001,8.435653e-001,8.349581e-001,8.261719e-001,8.172119e-001,8.080837e-
001,7.987927e-001, 
 
7.893445e-001,7.797450e-001,7.700000e-001,7.601153e-001,7.500970e-001,7.399512e-
001,7.296839e-001, 
 
7.193015e-001,7.088102e-001,6.982165e-001,6.875267e-001,6.767474e-001,6.658850e-
001,6.549462e-001, 
 
6.439376e-001,6.328659e-001,6.217378e-001,6.105602e-001,5.993396e-001,5.880831e-
001,5.767974e-001, 
 
 
5.654893e-001,5.541657e-001,5.428336e-001,5.314997e-001,5.201710e-001,5.088543e-
001,4.975566e-001, 
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4.862846e-001,4.750452e-001,4.638452e-001,4.526915e-001,4.415908e-001,4.305498e-
001,4.195753e-001, 
 
4.086739e-001,3.978522e-001,3.871168e-001,3.764742e-001,3.659309e-001,3.554933e-
001,3.451677e-001, 
 
3.349604e-001,3.248775e-001,3.149253e-001,3.051097e-001,2.954366e-001,2.859121e-
001,2.765418e-001, 
 
2.673315e-001,2.582867e-001,2.494129e-001,2.407156e-001,2.321999e-001,2.238711e-
001,2.157342e-001, 
 
2.077942e-001,2.000559e-001,1.925239e-001,1.852029e-001,1.780973e-001,1.712114e-
001,1.645494e-001, 
 
1.581153e-001,1.519131e-001,1.459465e-001,1.402191e-001,1.347344e-001,1.294957e-
001,1.245063e-001, 
 
1.197691e-001,1.152870e-001,1.110628e-001,1.070989e-001,1.033979e-001,9.996197e-
002,9.679315e-002, 
 
9.389341e-002,9.126449e-002,8.890801e-002,8.682537e-002,8.501786e-002,8.348657e-
002,8.223242e-002, 
 
8.125618e-002,8.055844e-002,8.013963e-002,8.000000e-002, 
 
}; 
 
float H[Number_Of_Filters+2] = 
 
 {  
 
0.0,2.349535731,4.945514224,7.813784877,10.98290838, 
 
14.48444125,18.35324982,22.62785770,27.35082918, 
 
32.56919306,38.33491098,44.70539514,51.74407917, 
 
59.52105066,68.11374874,77.60773478,88.09754483, 
 
99.68763091,112.4934010,126.6423682,142.2754203,0.0 
}; 
 
/* Variable to store the vector of the speech signal */ 
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float mfcc_vector[20];  
 
//coeff is used to store the Mel-Frequency Spectrum 
. 
#pragma DATA_SECTION(coeff,".EXTRAM") 
 
struct mfcc coeff;   
 
//mfcc_ct is used to store the Mel-Frequency Cepstral Co-efficients. 
 
#pragma DATA_SECTION(mfcc_ct,".EXTRAM") 
 
struct mfcc mfcc_ct;  
 
FILE *fptr; 
 
float x[column_length],y[column_length]; 
 
 
/**********************FUNCTION DECLARATIONS**********************/ 
 
void function(struct buffer *); 
 
void log_energy(struct mfcc *); 
 
void mfcc_coeff(struct mfcc *, struct mfcc *); 
 
void mfcc_vect(struct mfcc *, float *); 
 
void mfcc(struct buffer *, struct mfcc *); 
 
 
/******************* START OF MAIN ***********************/ 
 
void main() 
 
{     
 
// Initialize the board support library, must be called first  
 
DSK6713_init(); 
      
// Start the codec  
 
hCodec = DSK6713_AIC23_openCodec(1, &config); 
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//Set sampling frequency via the number before KHZ in the define. 
 
//Choose from 8, 16, 24, 32, 44.1, 48, or 96 Khz. 
 
DSK6713_AIC23_setFreq(hCodec, DSK6713_AIC23_FREQ_8KHZ); 
 
DSK6713_DIP_init(); 
 
DSK6713_LED_init(); 
 
 
/************START OF INITIALIZING THE VARIABLES TO ZERO*********/ 
 
 
 
for ( i=0; i < row_length ; i++ )  /* Total Number of Frames */ 
 
 { 
               for ( j = 0; j < column_length ; j++) /* Total Number of Samples in a Frame */ 
 
 {  
               real_buffer.data[i][j].real = 0.0; /* Initializing real part to be zero */ 
 
       real_buffer.data[i][j].imag = 0.0; /* Initializing imaginary part to be zero*/ 
   
           } 
  
           } 
  
for ( i=0; i<row_length; i++)  /* Total Number of Frames */ 
 
               { 
 
                       for ( j=0; j<Number_Of_Filters; j++)  /* Total Number of Filters */ 
 
    { 
 
                        coeff.data[i][j] = 0.0; /* Initializing the co-effecient array */ 
 
   mfcc_ct.data[i][j] = 0.0; /* Initializing the array for storing MFCC */ 
 
  } 
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for(i=0;i<N;i++) 
 
buffer1[i]=0; 
 
for(i=0;i<column_length;i++)  /*- Initialization -*/ 
 
 { 
            
             x[i]=0;  
 
  y[i]=0; 
 
 } 
 
 
/************END OF INITIALIZING THE VARIABLES TO ZERO*************/ 
 
 
function(&real_buffer); //Function for obtaining input from user, framing and windowing    
            
for(g=0;g<column_length;g++) 
 
 {for(i=0;i<column_length;i++) 
 
   { 
 
                         x[i]= real_buffer.data[g][i].real; 
 
    y[i]=0; 
 
   } 
 
   z=column_length; 
 
  fft(z,x,y);                       //FFT Function call for each frame 
 
  for(i=0;i<column_length;i++) 
 
  { 
 
                         real_buffer.data[g][i].real=x[i]; 
 
      real_buffer.data[g][i].imag=y[i]; 
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  } 
 
power_spectrum(&real_buffer); //Call power spectrum function  
 
 
mfcc(&real_buffer,&coeff); //Mel Freq Spectrum of power spectrum 
 
 
log_energy(&coeff); //Converting to Decibel Scale 
 
 
mfcc_coeff(&mfcc_ct,&coeff); //Compute DCT 
 
 
mfcc_vect(&mfcc_ct,mfcc_vector); //Compute mel Vector  
 
 
 
 
/* Store the Vector in a Flat File */ 
   
fptr = fopen("train_vect.dat","w"); 
 
 fprintf(fptr, "{"); 
 
   for ( i =0; i < Number_Of_Filters ; i++)  
 
    fprintf(fptr, "%f, ",mfcc_vector[i]); 
  
   fprintf(fptr,"}"); 
 
  fclose(fptr); 
 
 
printf("Thank you\n"); 
 
exit(0); 
 
/*************************END OF MAIN*******************************/ 
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/***********************START OF IO FUNCTION **********************/ 
 
 
void function(struct buffer *real_buffer) 
 
{ 
 
printf("Press DIP switch3 and speak into mic\n");  
  
while(1) 
 
 { 
 
             if(DSK6713_DIP_get(3) == 0)       //if SW#3 is pressed 
 
     { 
           
            DSK6713_LED_on(3);                     //turn on LED#3 
 
   for (i = 0; i<N; i++) 
 
 { 
 
            if(DSK6713_DIP_get(3) == 0) 
 
      while (!DSK6713_AIC23_read(hCodec, &xL)); 
 
      { 
 
               buffer1[i] =xL;    //input data 
      
             if(DSK6713_DIP_get(3) == 1) 
    
             break; 
            
             } 
         
             } 
 
       
 k=i; 
        
           DSK6713_LED_off(3);              //LED#3 off when buffer full 
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 break; 
 
  } 
 
 } 
      
c=0; 
 
j=0; 
  
for(i=0;i<k;i++) 
 
 { 
             
            real_buffer->data[c][j].real = ((float)buffer1[i])*hamming_window[j]; 
 
   j++; 
 
   if(j>column_length-1) 
 
    { 
                           
                          j=0; 
 
   c++; 
 
    } 
 
  if(c>row_length-1) 
 
     { 
break;                
                         } 
 
             } 
return; 
 
} 
 
/********************* START OF FFT FUNCTION ************************/  
 
fft( int n, float x[N],float y[N]) 
 
{ 
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int i,j,t; 
 
int n1,n2,l; 
 
float a,c,s,e; 
 
float xt,yt; 
 
int q=n/2; 
 
n2=n; 
 
for(t=0; t<q; t++) 
 
 { 
                
             n1=n2; 
 
  n2=n2/2; 
 
  e=6.283185307179586/n1; 
 
  for(j=0;j<n2;j++) 
 
   { 
                          
                         a = j*e; 
 
   c = cos(a); 
 
   s = -sin(a); 
  
   
 for(i=j;i<n;i+=n1) 
 
   { 
                                      
                                     l=i+n2; 
 
    xt=x[i]-x[l];     
       
    x[i]=x[i]+x[l];   
        
    yt=y[i]-y[l];           
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                                    y[i]=y[i]+y[l];          
 
    x[l] = xt*c - yt*s;      
   
    y[l] = xt*s + yt*c; 
     
   } 
                           
                                   } 
  
 } 
  
bitreversal(n, x, y); 
 
return; 
  
} 
 
/**************** START OF BIT REVERSAL FUNCTION ******************/ 
 
bitreversal(int n, float x[N], float y[N]) 
 
{  
 
int i,j,p,n1; 
 
j=0; 
 
n1=z-1; 
 
for(i=0;i<n1;i++) 
 
 { 
                        
                        float temp; 
 
  if(i>=j) goto end; 
 
   temp=x[j]; 
 
        x[j]=x[i]; 
 
        x[i]=temp; 
 
        temp=y[j]; 
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        y[j]=y[i]; 
 
        y[i]=temp; 
 
   end: p=n/2; 
 
   kk:  if(p>j) goto  kt; 
      
       j=j-p; 
 
                 
 p=p/2; 
 
     goto kk; 
 
  kt: j=j+p; 
 
  } 
 
 return(0); 
 
} 
 
/************** FUNCTION TO COMPUTE POWER SPECTRUM *************/ 
 
 
power_spectrum(struct buffer *real_buffer)  
 
{ 
 
for (i=0; i<row_length; i++)  /* For all the Frames */ 
 
 { 
 
for ( j=0; j < column_length; j++)  /* For all the samples in one Frame */ 
 
  { 
 
real_buffer->data[i][j].real =  
( 
(real_buffer->data[i][j].real)*(real_buffer->data[i][j].real)) +  
((real_buffer->data[i][j].imag)*(real_buffer->data[i][j].imag) 
); 
   
                         }/* Compute Power (real)^2 + (imaginary)^2 */ 
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 } 
 
return;  
 
} 
 
/************ FUNCTION TO CONVERT TO DECIBEL SCALE*************/ 
 
void log_energy(struct mfcc *coeff)  
 
{ 
 
for ( i=0; i<row_length; i++)   
 
 { 
 
for ( j=0; j<Number_Of_Filters; j++ )  
 
  { 
 
coeff->data[i][j] =  20*log(coeff->data[i][j]+1);  
 
  } 
 
   } 
 
return; 
 
} 
 
/************** FUNCTION TO COMPUTE MEL COEFFICIENTS*************/ 
 
 
void mfcc(struct buffer *real_buffer, struct mfcc *coeff) 
 
 
{ 
 
int F[22] =  
 
{ 
 
0,100,200,300,400,500,600,700,800,900,1000,1149,1320,1516,1741,2000,2297,2639,303
1,3482,4000,4000 
};  
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 int Fi_up,Fi_down;  
   
 float delt_f = 8000.0 //column_length; 
    
 float MFCC_k = 0;    
 
 int delt_F_up, delt_F_down, v,w1,w2;  
 
for(v=0;v<100;v++)  //For each frame  
 
 { 
            
             w1=0; 
 
  MFCC_k=0; 
 
 for(i = 1; i < 21; i ++)  
 
{ 
  
coeff->data[v][i-1]=0; 
 
          delt_F_up = F[i] - MFCC_k;    
 
          Fi_up = (int)(((double) delt_F_up)/delt_f);  
   
          delt_F_down = F[i+1] - (MFCC_k + (Fi_up+1)*delt_f);    
 
           
Fi_down = (int)(((double) delt_F_down)/delt_f);    
 
          for(k = 0; k < Fi_up; k++)    
 
          { 
 
coeff->data[v][i-1] += (MFCC_k - F[i-1]) * real_buffer->data[v][w1].real / (F[i] - F[i-1]);  
   
MFCC_k += delt_f;   
     
 w1++; 
 
  }    
 
       w2=w1; 
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    for(k = 0; k < Fi_down; k++)    
 
{ 
 
coeff->data[v][i-1] += (F[i+1] - MFCC_k) * real_buffer->data[v][w2].real / (F[i+1] - 
F[i]);    
 
MFCC_k += delt_f;  
 
 w2++; 
 
          }    
    
 MFCC_k -= delt_f*(Fi_down-1);    
 
      }   
 
} 
 
return; 
 
/********* FUNCTION TO COMPUTE DISCRETE COSINE TRANSFORM*******/ 
 
 
void mfcc_coeff(struct mfcc *mfcc_ct, struct mfcc *coeff)  
 
{ 
 
for ( i=0; i<row_length; i++)  /* For all the frames (100 Frames) */ 
 
 { 
 
for (j=0; j<Number_Of_Filters; j++ )  /* For all the filters */ 
 
    { 
 
 mfcc_ct->data[i][j] = 0.0; 
 
 for ( k=0; k<Number_Of_Filters; k++) 
 
   { 
 
mfcc_ct->data[i][j] = mfcc_ct->data[i][j] + coeff->data[i][k]*cos((double)((PI*j*(k-
1/2))/Number_Of_Filters)); 
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 } 
 
    } 
 
 } 
  
 return;  
 
} 
 
/****FUNCTION TO COMPUTE DISTANCE AND CONVERSION TO VECTOR***/ 
 
 
void mfcc_vect(struct mfcc *mfcc_ct,float *mfcc_vector) 
 
{ 
 
for ( i=0; i< Number_Of_Filters; i++ ) 
  
   { 
 
mfcc_vector[i] = 0;  
 
for (j=0; j< row_length; j++)   
 
      
{ 
 
mfcc_vector[i] = mfcc_vector[i] + ((mfcc_ct->data[j][i])); 
 
 } 
 
   } 
 
return; 
 
} 
 
 
/********************* END OF PROGRAM*************************/ 

 

 
 



 60   

 

 8.2 Code for Recognition of a trained user 
 

While recognizing a trained speaker, the code needs to be appropriately modified. 

Instead of writing the generated vector to a file, we compare the generated vector with the 

already available vectors to find a match. The User Number is asked for, and the input 

voice sample is compared with the voice samples for that user.  

 

 
for(i=0;i<Number_Of_Speakers;i++) 
 
 { 
 
if(training_vector[i][20]==code) 
 
  { 
 
           range=i; 
 
           break; 
 
   } 
 
 } 
 
 
if(i==Number_Of_Speakers) 
 
 { 
 
printf("Invalid Password\nAccess Denied"); 
  
exit(0); 
  
  } 
 
 
 
//Identifying the Speaker  
 
for ( i=range; i<range+5; i++ )           // For the 5 samples of the identified user  
 { 
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distance = 0.0;  
        
  for ( j=1; j<Number_Of_Coefficients; j++ )   
 
  { 
 
distance = distance + abs(mfcc_vector[j]-training_vector[i][j]); 
 
} 
 
// Identify the speaker sample with least distance 
 
  if ( distance < ref_distance )  
 
  { 
                   
                         speaker = i; 
   
    ref_distance = distance;  
  
   } 
 
 } 
 
/* Print the identified Speaker */ 
 
if(ref_distance<30000)  //Threshold for Euclidean Distance 
 
 { 
 
                     if(speaker>=0&&speaker<5) 
 
  { 
 
                         printf("Aniruddha Identified\n"); 
 
   } 
 
  if(speaker>=5&&speaker<10) 
 
  { 
 
                         printf("Amruta Identified\n"); 
  
   } 
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  if(speaker>=10&&speaker<15) 
 
  { 
                           
                         printf("Kavita Identified\n"); 
 
   } 
 
  if(speaker>=15&&speaker<20) 
 
  { 
                 
                        printf("Prathamesh Identified\n"); 
 
  } 
 
  if(speaker>=20&&speaker<25) 
 
  { 
 
                         printf("Sneha Identified\n"); 
 
   } 
 
/* Print the identified Sample */ 
 
 printf("Access Granted\n"); 
 
 } 
 
else 
  
printf("Invalid Password \nAccess Denied\n"); 
 

 

 

 

 

 



 63   

 

9. RESULT ANALYSIS 
 

Part 1: Speaker Identification 

Initially our project was speaker identification as the text password was not used. When a 

user gave an input voice sample, feature extraction process was performed on this input 

sample i.e the Mel frequency coefficients were computed. These were then compared 

with the reference models (i.e database of trained coefficients) for each speaker (speaker 

1 to speaker N) . The selection was performed depending on the minimum difference 

between input sample and reference model. Thus speaker identification was performed. 

This process is summarized in figure below. 

 

9.1 Speaker Recognition Model 
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For the speaker identification process we made a database of 5 users. Each user 

trained 5 times. Here there were three possibilities: Correct speaker is recognized, 

Incorrect Speaker is recognized or Access is denied because difference in the input 

sample and stored coefficients is very high. Each user was made to speak 10 times. The 

results are as shown below 

 

User Number Correctly 

Recognized 

Incorrectly 

Recognized 

Access Denied------

Prompt to try again 

USER1 8 2 0 

USER2 9 1 0 

USER3 9 0 1 

USER4 7 2 1 

USER5 10 0 0 

TOTAL=5 TOTAL=43 TOTAL=5 TOTAL=2 

 

 

Considering the access denied cases as also correct results because it might be due 

to noise in the surroundings of the user, we can compute efficiency as: 

 

EFFICIENCY= (Total Samples – Incorrectly Recognized) 

    ---------------------------------------------------- 

       (Total Samples) 

 

  

Therefore efficiency achieved is 90%. 
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Part 2: Speaker Verification 

 

The second part of our project was speaker verification as the text password has 

been used. Therefore initially the user is prompted for a text password i.e. User number. 

Then the user gives an input voice sample which is subjected to the feature extraction 

process i.e. the Mel frequency coefficients are computed. These are then compared with 

the reference model M selected using text password for only that speaker. The 

verification is then performed by comparing difference between the computed vectors for 

input sample and database vectors to an empirical threshold. Thus speaker verification is 

performed. This process is summarized in figure below. 

 

 
9.2 Speaker Verification Model 

 

For the speaker verification process also we made a database of 5 users. Each user 

trained 5 times. Here there were two cases: Correct speaker tries to access or incorrect 

speaker tries to access. In both cases there are two possibilities: Access is granted or  
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access is not granted. Each user was made to speak 10 times in his user ID and randomly 

10 incorrect samples were taken for each user ID. The results are as shown below 

 

Correct User Incorrect User User Number 

Access 

granted 

Access not 

granted 

Access 

granted 

Access not 

granted 

USER1 10 0 0 10 

USER2 9 1 1 9 

USER3 8 2 1 9 

USER4 10 0 0 10 

USER5 10 0 0 10 

TOTAL=5 TOTAL=47 TOTAL=3 TOTAL=2 TOTAL=48 

 

Considering the access granted to incorrect user as incorrect results, we can compute 

efficiency as: 

 

EFFICIENCY= (Total Samples – access granted to incorrect user) 

    -------------------------------------------------------------- 

              (Total Samples) 

 

Therefore efficiency achieved is 96%. 

 

Thus efficiency achieved is higher for the speaker verification part as compared to 

speaker identification part for this project. 
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10. APPLICATIONS 
 

             The main application of speaker recognition is in security systems to identify a 

person. Thus access will granted only to the person who has permission granted by the 

administrator. The person’s speech samples must first be included in the database by the 

administrator. Speaker recognition for access control can be extended to wide variety of 

applications ranging from voice dialing, banking by telephone, telephone shopping, 

database access services, Information services, voice mail, security control for 

confidential information areas, and remote access to computers. Recognition of speech 

can also be extended to speech to text converters. A widely used application of the 

recognition of spoken words is the voice tags application found in most new mobiles.  
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11.  CONCLUSION 
 

We have thereby, effectively implemented speaker identification and speaker 

verification using TMS320C6713 DSK. The results show that a high efficiency can be 

achieved for both purposes using this algorithm based on Mel Frequency Cepstral 

Coefficients. This speaker recognition module performs accurately as both a speaker-

dependent and text -dependent system.  
 

The results acquired by our system confirm that the use of Fourier Transform with 

MFCC parameterization is a very promising method in the Automatic Speaker 

Recognition field. For real time processing of Speech signal, fast processors like Digital 

Signal Processors are required. Therefore the TMS320C Digital Signal Processors 

provide an excellent platform for the development of speaker recognition modules due to 

involvement of complex Fourier analysis in their algorithm.  

 

The cepstral representation of the speech spectrum provides a good representation 

of the local spectral properties of the signal for the given frame analysis. Mel scale is also 

less vulnerable to the changes of speaker's vocal cord in course of time. The present study  

is still ongoing, which may include following further works. HMM may be used to 

improve the efficiency and precision of the segmentation to deal with crosstalk, laughter 

and uncharacteristic speech sounds. 

 

Even though much care is taken it is difficult to obtain an efficient speaker recognition 

system since this task has been challenged by the highly variant input speech signals. The 

principle source of this variance is the speaker himself. Speech signals in training and 

testing sessions can be greatly different due to many facts such as people voice change 

with time, health conditions (e.g. the speaker has a cold), speaking rates, etc. There are 

also other factors, beyond speaker variability, that present a challenge to speaker 

recognition technology. Because of all these difficulties this technology is still an active 

area of research. 
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